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Abstract Displacements of a miscible magnetic layer in a capillary tube under a moving ring-
shaped magnet are studied numerically. The magnet is adjusted dynamically to maintain a
constant distance from the front mixing interface on the centerline. Control parameters, such as
magnetic strength, effective viscosity variation due to magnetization, diffusion and the position of
the magnet, are analyzed systematically. Motion of the magnetic layer is evaluated by two
quantitative measurements, i.e. movement of center of gravity and spread of layer width. In
general, the moving speed of the center of gravity depends only slightly on the magnetic strength,
and is found slower at a higher viscosity ratio and a closer placement to the front interface as well if
the magnet is placed amid the layer. A weaker spread occurs in situations of stronger magnetic
strength, lower viscosity parameters and also placements near the rear interface. A multi-front
finger results if the magnet is positioned ahead of the front interface.

1. Introduction
An understanding of fluid dynamics, as well as mass transfer in a capillary
tube, is important for both basic theoretical modeling and applications in the
fields of hydrology, filtration and bio-engineering. Displacements subject to the
conventional mechanisms, such as injection flows or gravity, have been studied
thoroughly, i.e. the classical studies by Taylor (1961), Cox (1962) and
corresponding calculations by Reinelt and Saffman (1985) in immiscible cases,
as well as Bretherton (1961) for long bubbles. Taylor measures the amount of
fluid displaced by injecting air into a horizontal capillary tube, initially filled
with a viscous fluid, in order to calculate the thickness of the film of displaced
fluid left behind on the wall of the tube as a function of the capillary number Ca.
The numerical simulations by Reinelt and Saffman, based on the Stokes
equations, agree very closely with these experiments. Petitjeans and
Maxworthy (1996), as well as Chen and Meiburg (1996) implemented
a corresponding collaborative investigation for miscible fluids. In these flows,
a cutoff length is set by diffusive effects rather than surface tension, so that in
some sense the Peclet number Pe replaces Ca. These authors also address finite
viscosity ratios by varying the Atwood number At, as well as the role of
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density differences (expressed by a further dimensionless parameter F ), by
conducting experiments and simulations in vertical tubes. The miscible and
immiscible cases differ fundamentally in that the miscible flow can never
become truly steady. Eventually, diffusion will cut off the supply of “fresh”
displacing fluid, and for a long time the case of Poiseuille flow and Taylor
dispersion (Taylor, 1953) will be approached.

On the other side, the development of magnetic fluids has created novel
applications in similar studies with different driving forces. Magnetic fluids,
which contain both flow and magnetic properties, have been widely used as
devices to enhance heat transport effects due to grater thermo-magnetic free
convection (Kamiyama et al., 1999; Yamaguchi et al., 1999a, b). In other
applications, the increase in effective viscosity by the presence of magnetic
field is commonly applied as a damping mechanism (Dababneh et al., 1993;
Raj and Moskowitz, 1980). Recently, with rapid developments in micro-devices,
magnetic-force driving flows also represent potential applications in
micro-scale flow fields where the traditional driving sources, such as
pressure drop, are difficult to provide. In addition, mass transfer of miscible
matter is crucial to improvement for better medicinal transportation, which is
conventionally transported by human bio-circulation. A future application is to
produce a medical solution in the form of magnetic fluid. With guidance from
an external magnetic field, the medication can reach and remain at the target
spot, a feat which traditional human circulation has difficulty in achieving.
Chen et al. (2002a, b) studied the mass transfer of a miscible interface of a
magnetic fluid that is transported purely by a dynamic magnetic field.
They have qualitatively evaluated the effects of mass transfer under the
influences of various control parameters, such as magnetic strength, viscosity
variation due to the presence of a magnetic field and position of the magnet.
Optional conditions of the best mass transfer factor or transferable distance
were found. Here, we present the numerical simulations of a finite layer of a
miscible fluid in a magnetic Stokes flow, under the influence of a moving
ring-shape magnet with an additional injecting flow, to investigate the motion
of magnetic fluids.

2. Governing equations
An incompressible time-dependent axisymmetric layer of a miscible magnetic
fluid, having a width twice that of the tube diameter d, with front and rear
mixing interfaces at z ¼ 9 and 11, respectively, as shown in Figure 1, is studied.
The layer is displaced by an injecting flow from the right, and subjected to the
attraction of a dynamic ring-shaped magnet placed at a constant distance zm
away from the front mixing interface, which is defined as the location of 0.5
average concentration across the tube section. The system of governing
equations of concentration, mass and momentum is as follows:
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where v is the velocity vector, and p the pressure. The stress tensor t is
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where h is the viscosity, m0 represents the permeability in the vacuum, and
M and H the magnetization and magnetic field, respectively. Concentration of
magnetic fluid is denoted by c and the diffusion coefficient by D. It is known
that the effective viscosity of a magnetic fluid increases under the presence of a
magnetic field. The increase in viscosity is mainly due to the reorientation of
magnetic particles when a magnetic field is applied. Various correlations of
viscosity to magnetic field strength have been reported by Shliomis (1972) and
Kobori and Yamaguchi (1994). Here, experimental results of a silicon oil-based
magnetic fluid from Chu (1998) associated with the concentration variation are
applied and take the form

Figure 1.
Principle sketch: motion
of layer of miscible
magnetic fluid is driven
both by injecting flow
and a moving ring
magnet
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hðH ; cÞ ¼ h0ea0Hc; ð4Þ

where h0 denotes the original fluid viscosity with zero magnetization and a0 a
material constant with a unit inverse to the magnetic strength. The magnitude
of a0 ¼ 0:012 is reported by Chu (1998) for magnetic field up to 300 Oe in room
temperature. The magnetization is taken in proportion to concentration c, and
the M-H curve follows the Langevin function L(a0) with saturated
magnetization Mg,

Lða0Þ ¼ cothða0Þ2
1

a0

� �
ð5Þ

M ðH ; cÞ ¼ MgLða0Þc ð6Þ

Here, a0 is the ratio of magnetic and kinetic energy and takes the form

a0 ¼
mH

KT
; ð7Þ

where m is the magnetic moment, T the temperature and K denoted the
Boltzmann constant. The value of m=KT varies with the fluid properties and
the local temperature. A typical magnitude of m=KT < 50 is observed by Chu
(1998) under room temperature. For more details of the Langevin function, the
reader can refer to Rosensweig (1985). The expression of the magnetic field is
taken as the similar forms of experimental measurements in Kamiyama et al.
(1999) and Yamaguchi et al. (1999a, b) as

Hz ¼ H 0Fz; Fz ¼ e2ðz2z0Þ
2

ð8Þ

where H0 and z0 determine the strength of the magnetic field and the location of
the magnet. It should be noticed that the radial component of the magnetic field
is neglected. When considering the current capillary tube with a small
diameter, the neglect of radial magnetic strength is justified. It is further
assumed that the magnetic fluid possesses the same viscosity as the non-
magnetic miscible fluid when no magnetic field is applied. Thus, the viscosity
variation is caused solely by external magnetic effects.

In order to render the equations dimensionless, the tube diameter d,
the velocity of the Poiseuille flow profile at the centerline U, and the fluid
viscosity h0 are taken as characteristic scales, resulting in four dimensionless
parameters, such as a magnetic number Mg, Peclet number Pe, magnetization
number a and a viscosity parameter R defined as

Mg ¼
m0MgH 0d

h0U
ð9Þ
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Pe ¼
Ud

D

ð10Þ

a ¼
mH 0

KT
ð11Þ

R ¼ a0H 0 ð12Þ

The viscosity parameter R leads to the local viscosity function

h ¼ eðRFzcÞ ð13Þ

The final form of the governing equation in the streamfunction C
formulation is
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where function g is the viscosity term referred to by Chen and Meiburg
(1996), with the replacement of c by Fzc, and h the magnetic force terms.
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h ¼ LðaFzÞ
›Fz

›z

›c
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Boundary conditions are prescribed as

z ¼ z1; z2 :
›2c
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¼ 0;
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r ¼ 0 :
›c

›r
¼ 0; c ¼ 0;

›c
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r ¼ 0:5 :
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›r
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1

16
;

›c

›r
¼ 0: ð18Þ

At time t ¼ 0; one-dimensional concentration fields in the form of an error
function are specified on both mixing interface. The streamfunction equation is
solved by the means of second-order central finite differencing discretization
associated with the SLOR method and multi-grid technique. The concentration
equation, which is discretized by means of four-point, third-order upwing
stencils for the convective terms, and five-point, fourth-order central stencils for
the diffusive terms, is solved by an ADI scheme. A constant time step Dt ¼
0:001 and grid size Dr ¼ Dz ¼ 1=128 are applied in the simulations. This
scheme is well tested and more detailed numerical implementations can be
obtained in Chen and Meiburg (1996).

3. Results
We begin by describing the temporal and spatial evolution of a reference case,
in order to identify the dominant mechanisms at work. Subsequently, the
values of the governing parameters, such as magnetic number Mg, Peclet
number Pe, viscosity parameter R, magnetization number a and dynamic
placement of magnet zm will be varied individually to elucidate their effects.

3.1 Reference cases
We first present the reference simulation of Pe ¼ 1; 600; Mg ¼ 1; 000; R ¼ 0
and a ¼ 50; which is near the saturation point of the Langevin function. The
dynamic magnet position is initially placed on the rear mixing front, i.e.
zm ¼ 2; and moves with the displacement of the front interface. Figure 2
displays the time sequences of the concentration field. In the present situation,
the magnetic fluid is displaced towards the left by the forced convective flow,
and is attracted to the right by the magnetic field. On the centerline, the
convection transporting the magnetic fluid forward can be clearly identified.
However, the overall convective transportation is not quite significant because
of the attraction by the magnet. The movement of the major bulk of the
magnetic fluid is slow. This slow movement of the magnetic fluid along the
centerline allows more time for diffusion in the radial direction to proceed,
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wherein mixing interfaces appear flat, even with the initial Poiseuille flow in
the parabolic profile. The flat interfaces indicate a more even velocity
distribution across the tube section, the velocity near the wall being accelerated
with the reduction in the centerline velocity. The change in the velocity profile
can be understood by the corresponding streamlines, shown in Figure 2(e).
At the locations of the mixing interfaces, the detoured streamlines towards
the wall are clearly shown, when compared to the parallel streamlines of the
Poiseuille flow elsewhere. Another point which should be noticed is that
the rear interface is much flatter than the front one. It can be attributed to the
non-uniform distribution of the magnetic field. Since the current placement of
the magnet is near the rear interface, this interface subjects a much stronger
attraction than the front, thus leading to a flatter interface.

In order to measure the movement of the magnetic layer, the center of
gravity in a magnetic fluid can be calculated as

Cg ¼ 8

Z 12

0

Z 1
2

0

rzcðr; zÞ dr dz; ð19Þ

as plotted in Figure 3. It is interesting to notice that the center of gravity is
seen to move in a linear behavior with a constant rate of about 20.5, which is
the average velocity of a pipe flow, despite the presence of the magnetic effect.
However, the center of gravity gives only partial information concerning the

Figure 2.
Reference case:
Mg¼1,000, Pe¼1,600,
R¼0, a¼50 and zm¼2.
Concentration fields at
(a) t¼0, (b) t¼1, (c) t ¼ 4,
(d) t¼7, and
(e) streamlines at t¼7.
Mixing interfaces are flat
due to attraction of
magnetic field placed
behind. Clear detour of
flow is observed near
mixing interfaces

HFF
13,2

250



transportation of the magnetic layer. Another quantitative measure which
should be considered is the spread in the layer. The profiles of the average
concentration across tube section ca at different times are plotted in Figure 4(a)
and (b). The block of high concentration is not merely transported, but is
slightly stretched as well, with a near symmetry to the center of gravity. In
order to evaluate the spread of the magnetic fluid, the length of the stretched
block len is defined as the distance between ca ¼ 0:1; the growth of len being
displayed in Figure 5. The very insignificant growth of len reflects that the
distribution of the magnetic fluid is mainly concentrated in the center of
gravity without a strong spread. The weak spread in the average concentration
also confirms the flat interfaces in the concentration images.

3.2 Effects of control parameters
We first discuss the influence of the magnetic number Mg, which expresses the
dimensionless strength of magnetic field. An important point which should be
noticed is that for certain fluid combinations and environment, in which the
diffusion D, material coefficients a0 and kinetic energy factor m=KT are fixed,
the magnetic number Mg, viscosity parameter R and magnetization number a
all vary with the strength of the magnetic field H0. This fact couples the three
parameters; hence they should not be treated separately. As discussed in Chen
et al. (2002a, b), a critical strength that gives the most significant magnetic
effects can be found. This critical value depends on the fluid properties, such as
fluid viscosity with zero magnetization and material coefficient a0. In order to
describe the general physical behavior, Mg, R and a are analyzed separately in
the present study. Displayed in Figure 6 are the concentration images

Figure 3.
Movement of center of

gravity Cg at Pe¼ 1,600,
R ¼ 0, a ¼ 50, and

zm ¼ 2. Moving speed of
center of gravity depends
very weakly on strength

of magnetic field

Motion of
miscible

magnetic fluids

251



Figure 4.
Profiles of average
concentration ca for
various magnetic
numbers Mg at
Pe¼ 1,600, R ¼ 0,
a ¼ 50 and zm ¼ 2 for
(a) initial condition,
(b) Mg ¼ 1,000 at t ¼ 7,
(c) Mg ¼ 0 at t ¼ 7,
(d) Mg ¼ 200 at t ¼ 7,
and (e) Mg ¼ 2,000 at
t ¼ 7. Magnetic
attraction shortens width
of the layer of magnetic
fluid significantly

Figure 5.
Length of the layer of
magnetic fluid at
Pe ¼ 1,600, R ¼ 0,
a ¼ 50 and zm ¼ 2.
Layer width remains
almost unchanged for
stronger magnetic
strength Mg ¼ 2,000,
contrasted to nearly
linear growth at zero
magnetic field
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simultaneously for various Mg with other parameters kept identical to the
reference case. At zero Mg, shown in Figure 6, the flow is purely Poiseuille;
thus, the mixing interfaces appear parabolic, in contrast to the flat profiles
found in the reference case. Due to lack of magnetic attraction, the amount of
bulk concentration is transported in a much greater quantity to the left by the
strong forced convection. The increase in Mg, cf. Figure 6, clearly results in a
slower moving block of magnetic fluid as well as the smaller curvatures in the
mixing interfaces. In addition, the stronger magnetic field also reduces the
magnetic fluid left behind near the wall region, or film thickness referred in
Taylor (1961). While a significant amount of magnetic fluid still wets the wall
due to the weak field locally for a zero magnetic number, very little
concentration of magnetic fluid is left for Mg as high as 2,000. The fact reflects
the asymmetric longtailed profile of the average concentration for the lower
Mg ¼ 200 in Figure 4(d) and the steeper transition of the average concentration
profile at the higher Mg ¼ 2; 000 in Figure 4(e). The movement of center of
gravity Cg shows no dependence on the magnetic field with a speed of 20.5, as
displayed in Figure 3. However, the spread in concentration varies strongly in
the fields, as shown in Figure 5. At zero magnetic strength, the width of the
concentration layer is due to the stretch in the Poiseuille flow, for which its
centerline speed is normalized to unity, and diffusion. The growth in the stretch
shows a nearly constant rate that is slightly lower than 1. As the field is
increased, the spread in the magnetic fluid is reduced significantly. At Mg ¼
2; 000; the length of the magnetic layer remains near the initial width without a

Figure 6.
Concentration fields for

various magnetic
numbers Mg at

Pe ¼ 1,600, R ¼ 0,
a ¼ 50, zm ¼ 2 and

t ¼ 7. (a) Mg ¼ 0,
(b) Mg ¼ 200, and

(c) Mg ¼ 2,000. Flatter
mixing interfaces are

found at higher magnetic
numbers
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significant spread. The nearly identical position of the center of gravity
associated with a weaker spread indicates a smaller mass transport for a
stronger magnetic field.

Influences of viscosity parameter R are also investigated. For a certain
magnetic fluid, R is proportional to the external field, as defined in equation
(10). The concentration image at R ¼ 2:5; which indicates about twelve times
more viscous magnetic fluid than in the environment due to magnetization, is
shown in Figure 7(a) with identical Mg, Pe, a and magnet placement with
regard to the reference case. Apparent influences are observed if the viscosity
variance is taken into account. A flat real mixing interface is no longer
preserved. Penetration of a less viscous non-magnetic fluid is also found inside
the layer along the centerline. On the other hand, a blunter interface, compared
to the reference case, is formed on the front side. A larger amount of magnetic
fluid is left on the wall region, or referred as film. These changes can be
understood by the effects of viscous stabilities. On the rear interface, a less
viscous fluid displaces a more viscous one, so that the well-known Taylor-
Saffman instability is perturbed. The facts of stronger fingering penetration as
well as the larger film thickness left behind (Chen and Meiburg, 1996; Petitjeans
and Maxworthy, 1996) agree well with the current findings. A different
scenario occurs on the front interface, where the viscosity ratio is favorable.
A blunter interface results from the stable viscous effect. The movement of the
center of gravity and the growth in the length of the layer are displayed in
Figure 8. Unlike the very weak effects of the strength of the magnetic field, the
movement of the center of gravity shows a distinguishable difference at

Figure 7.
Concentration fields for
various control
parameters Mg ¼ 1,000
and zm ¼ 2
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various viscosity parameters, as in Figure 8(a). Slower movement is found at a
higher viscosity effect, which reflects less mobility of the magnetic fluid; thus,
more is left behind to wet the wall. The spread of the layer is stronger at a
higher viscosity ratio, which is also caused by the larger amount left near
the wall as shown in Figure 8(b). The influences of Pe, which represents
the magnitude of diffusion, are simulated as well. Shown in Figure 7(b) is the
concentration image at a higher value of Pe ¼ 3; 000: No interesting differences
are found except a weaker diffusion at the front interface, which leads to
a steeper concentration gradient. In general, the influences of Pe are quite
slight.

The influences of magnetization number are demonstrated by lower a ¼ 10
at t ¼ 4 and 7, concentration fields shown in Figure 7(c) and (d), respectively.
Unlike the reference case that the magnetization, governed by the Langevin
function in equation (5), is nearly saturated, the current smaller magnetization
number leads to a nearly linear relation between the local magnetic strength

Figure 8.
(a) Movement of center of

gravity, (b) length of
stretched magnetic fluid

layer at Mg ¼ 1,000,
Pe ¼ 1,600, a ¼ 50, and

zm ¼ 2 for various
viscosity parameters.

Slightly faster movement
of center of gravity and

less spread are observed
at lower viscosity

contrast
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and magnetization. A weaker and faster decay of magnetic force from the
position of magnet is resulted. An apparent needle-like front interface at earlier
time t ¼ 4 is observed due to the fast decay of the magnetic force. This sharp
needle front is unable to sustain the radial diffusion, and disperses off soon
after. A sudden retreat of the front interface, defined as the location of 0.5
average concentration, is caused by the dispersion. The active control of the
position of the magnet, which is adjusted to maintain a constant distance zm to
the front interface, leads to a replacement of the magnet back from z0 ¼ 7 to 9.
As a result, an unusual empty area inside the finger is observed at t ¼ 7: It
should to be addressed that even the current concentration image appears
similar to the high viscosity parameter situation as shown in Figure 7(a), the
mechanisms at work are quite different. For magnetization numbers higher
than the reference case, no significant differences are observed due to the
saturated states of magnetization. Movements of the center of gravity and
spreads of the layer are shown in Figure 8 for various magnetization numbers.
No significant effects are found at the center of gravity, as shown in Figure 9(a).
The stretches of the layer are seen more pronounced at lower magnetization
numbers due to weaker magnetic forces, displayed in Figure 9(b). The
invariance of layer width for magnetization numbers greater than 50 also
reflects the saturated states of magnetization.

We now focus on the effects of the position of the magnet. Several different
dynamic placements zm, that is, the constant distance away from the front
interface, are simulated, for which the images of the concentration are shown in
Figure 10(a)-(c). Since the magnetic field decays exponentially with the
distance, the placement of the magnet is expected to have major effects on the
motion of the magnetic fluid, as mentioned in Chen et al. (2002a, b). Figure 10(a)
displays the concentration image for the dynamic magnet placement right on
the front interface, i.e. zm ¼ 0: A very different concentration distribution from
the reference case results. A faster moving and well-shaped finger with a blunt
front, which resembles the patterns in the conventional displacement processes
(Chen and Meiburg, 1996, 2002; Petitjeans and Maxworthy, 1996), is formed
with a parabolic rear interface. The dramatic change in the concentration
distribution is caused by the opposite attraction of the magnetic field. The
magnetic force attracts the magnetic fluid towards the magnet, thereby
orienting in opposite directions on the two sides of the magnet. While the bulk
magnetic fluid is subjected to an attraction backward for zm ¼ 2; the magnetic
fluid is pulled forward at the current situation of zm ¼ 0: As a result, a larger
amount of magnetic fluid near the front interface, which is closer to the magnet
and therefore subject to a greater magnetic pulling force, is transported
forward in a faster path. The interface is blunter than in the case of zero
magnetic force as well, due to the larger amount of transported fluid. On the
other hand, a parabolic profile is preserved on the rear interface because of a
weaker pulling force. Also, an interesting multi-front interface is observed
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Figure 10.
Concentration fields for

various placement of
magnet at Mg ¼ 1,000,
Pe ¼ 1,600, R ¼ 0, and
a ¼ 50. (a) zm ¼ 0 at

t ¼ 7, (b) zm ¼ 20.5 at
t ¼ 4 and (c) zm ¼ 1 at

t ¼ 7. Placement of
magnet ahead of front
interface results in the

formation of a fast-
moving multi-front

finger

Figure 9.
(a) Movement of center of

gravity, (b) length of
stretched magnetic fluid

layer at Mg ¼ 1,000,
R ¼ 0, Pe ¼ 1,600, and

zm ¼ 2 for various
magnetization numbers.

Movement of center of
gravity depends very

weakly on the
magnetization numbers.
Less spread is observed
at higher magnetization

numbers
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inside the front finger. When considering that the magnitude of the magnetic
pulling force is represented by the gradient of the field strength, as shown in
momentum equation (3), zero magnetic force is generated at the location of the
magnet. The dynamic position of the magnet always produces the greatest
pulling force slightly behind the moving interface, thereby accelerating the
fluid locally. The consequent pulling effects at a different location lead to the
formation of a multi-front finger. A similar multi-front finger can also be seen
for zm ¼ 20:5; as in Figure 10(b). However, due to the lengthy distance to the
front interface, the enhancement of the forward mass transport of the magnetic
fluid by a magnetic effect is not as significant as at zm ¼ 0: The front finger
eventually separates the bulk magnetic fluid, in which the flow performs
similarly to the situation of zero magnetic strength, as shown in Figure 6(a). If
the magnet is placed amid the magnetic layer, i.e. zm ¼ 1; as shown in
Figure 10(c), the front interface is attracted backward while a pulling force is
applied to the rear interface with the same order of magnitude, leading to a
balanced distributed concentration image in which both interfaces appear
evenly flat.

The influences of the position of the magnet on the movement of the
center of gravity and the spread of layer length are depicted in Figure 11(a)
and (b), respectively. The moving speed of the center of gravity decreases as
zm is decreased, with a sudden jump at zm ¼ 0: On the other hand, the
length of magnetic layer tends to widen for a smaller zm. The different
trends in the movement of the center of gravity and layer width can be
attributed to the distinct dominance of the interfaces. When considering the
displacement of zero magnetic strength, the concentration shown in
Figure 6(a), a very condensed concentration is found at the front region
along the centerline. In order to resist mass movement, the magnet should be
placed near the front interface to preserve the concentration. This explains
the slower movement of the center of gravity at a lower zm. However, once
the position of the magnet is ahead of the front interface, the magnetic force
reorients and pulls the magnetic fluid forward. A sudden jump in the
moving speed results. In addition, Figure 6(a) also shows a long tail on the
concentration left behind near the wall. The tail increases the spread length
significantly even though the actual amount is not large, thus suggesting
that the width of the layer is mainly affected by the real interface. Placing
the magnet closer to the rear interface, therefore, significantly reduces the
length of the layer. Nevertheless, the preceding argument is simply a general
trend. The determination of a layer’s length is also affected by the magnetic
contraction at both the interfaces. The least spread is found at zm ¼ 1;
instead of the largest zm ¼ 2; thereby indicating the maximum effect of
magnetic contraction and rear interface dominance among the cases
presented here.
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4. Conclusion
We have investigated the motion of a layer of miscible magnetic fluid in a
capillary tube under a dynamic magnetic field induced by a ring-shaped
magnet. The magnet has been adjusted dynamically to maintain a constant
distance from the front interface on the centerline. Control parameters, such as
magnetic pulling force expressed by a dimensionless magnetic number Mg,
effective viscosity variation due to magnetization in a form of viscosity
parameter R, diffusive effect Pe, state of magnetization a and the position of the
magnet, have been analyzed systematically in order to understand their
influences. If the magnet is placed behind the front interface, transportation of
the bulk magnetic fluid is less significant, and the mixing interface appears
flatter. The transportation of a magnetic layer has been evaluated by two
quantitative measurements, the movement of the center of gravity Cg, and the
length of the layer spread. In general, the moving speed of the center of gravity
depends only slightly on these parameters but more on the placement of
magnet. A smaller spread of magnetic fluid also results form the higher

Figure 11.
(a) Movement of center of

gravity, (b) length of
stretched magnetic fluid

layer at Mg ¼ 1,000,
Pe ¼ 1,600, a ¼ 50, and

R ¼ 0 for various
placements of magnet.

Center of gravity moves
slower if magnet is

placed closer to and
behind the front

interface. A magnet
placed near the rear

interface in general leads
to less spread
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magnetic strength because of a stronger magnetic attraction. Less mobility at
larger viscosity parameters leads to a slightly slower movement in the center of
gravity. The unfavorable viscosity on the rear interface, which triggers
Saffman-Taylor instability, leaves more magnetic fluid behind near the wall,
thus widening the magnetic layer. The influences of the position of the magnet
have been observed to be more complex. In general, placement near the front
interface, where massive fluids are located, leads to slow movement in the
center of gravity. On the other hand, placement close to the rear interface
reduces the concentration tail on the wall, and shortens the layer width.
Placements of the magnet ahead of the front interface accelerate the movement
of the magnetic fluid. A well-shaped, multi-front finger, similar to the
conventional displacement, has been found. The influences of diffusion have
been found insignificantly in the current study.
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